GCOM-W1 Status Keizo Nakagawa¹, Norimasa Ito¹, Marehito Kasahara¹, and Keiji Imaoka² ¹ GCOM Project Team ² Earth Observation Research Center (EORC) Japan Aerospace Exploration Agency (JAXA) June 29, 2011 NCDC, Asheville ### **GCOM 1st Generation Satellites** | | GCOM-W1 | GCOM-C1 | | |-----------------------------------|--|--|--| | Orbit | Sun synchronous sub-recurrent orbit | | | | Recurrence cycle | 16 days | 34 days | | | Altitude | 700 km | 798 km | | | Inclination | 98.2 deg | 98.6 deg | | | Local sun time of descending node | 1:30 | 10:30 | | | mass | <1,991kg | < 2,100kg | | | power | > 3,880W | > 4,000W | | | Mission instrument | Advanced microwave scanning radiometer 2 (AMSR2) | Second-generation global
imager
(SGLI) | | | Design life | 5 years | | | # JAKA Japan Aemopsee Englierunium Agency #### Overview of AMSR2 - Deployable main reflector system with 2.0m diameter (1.6m for AMSR-E). - Frequency channel set is identical to that of AMSR-E except 7.3GHz channel for RFI mitigation. - Two-point external calibration with improved HTS (hot-load). - Deep space calibration maneuver to check consistency between main reflector and CSM. - Add a redundant momentum wheel to increase reliability. | GCOM-W1/AMSR2 characteristics | | | | |-------------------------------|--------------------------------|--|--| | Scan and rate | Conical scan at 40 rpm | | | | Antenna | Offset parabola with 2.0m dia. | | | | Swath width | 1450km | | | | Incidence angle | Nominal 55 degrees | | | | Digitization | 12bits | | | | Dynamic range | 2.7-340K | | | | Polarization | Vertical and horizontal | | | | AMSR2 Channel Set | | | | | | |--------------------------|------------------------|------|--|------------------------------|--| | Center
Freq.
[GHz] | Band
width
[MHz] | Pol. | Beam width [deg]
(Ground res. [km]) | Sampling
interval
[km] | | | 6.925/
7.3 | 350 | | 1.8 (35 x 62) | | | | 10.65 | 100 | V | 1.2 (24 x 42) | 10 | | | 18.7 | 200 | and | 0.65 (14 x 22) | 10 | | | 23.8 | 400 | Н | 0.75 (15 x 26) | | | | 36.5 | 1000 | | 0.35 (7 x 12) | | | | 89.0 | 3000 | | 0.15 (3 x 5) | 5 | | ## **GCOM-W1 Progress** - The system PFT started in August 2010. The electrical performance test, EMC test and Mechanical environmental test were over in February, 2011. - The earthquake occurred on March 11th, 2011 when preparation of thermal vacuum test was performed. Some parts of the walls in the test facility were broken down and the satellite was covered with the dust. - It took one month that another test facility (anechoic chamber) restored. GCOM-W1 moved to this facility and made cleaning and test. At the week of June 13th, the satellite came back to the same configuration as before the earthquake. - The end-to-end test including satellite and ground system was performed from June 22nd to 24th. ## **Present GCOM-W1 Feature** June 13th ## **Future Works and Ground Segment** #### GCOM-W1 Works until Launch - From July the preparation of thermal vacuum test (TVT) will start and the TVT will be performed for almost one month in August. - After TVT additional acoustic test will be performed to confirm the workmanship of the satellite re-assembling work. Then the final electrical performance test will be performed maybe until mid. October. - The pre-shipment review is planned in late October. #### Ground Segment - GCOM-W1 ground system is completed except L2,L3 processing software. - The end to end test with the satellite was finished in June. - The L2,L3 processing software will be completed in July. - The training and rehearsal will start 4 months prior to the launch. #### **GCOM-W1 Schedule** AMSR2 PFM antenna pattern measurement (6.925 GHz) GCOM-W1 PFM EMC test AMSR2 antenna deployment test ### GCOM-W1 in A-Train ### **Deep Space Calibration Maneuver** ### **Overview of SGLI** | | VNR | IRS | | |----------------------|--|--|--| | SGLI | Visible and Near Infrared Radiometer (Non-polarization and Polarization) | Infrared Scanning Radiometer (Shortwave Infrared and Thermal Infrared) | | | Spectral
Channels | Non-polarization: 11CH 380-865nm
Polarization(0, 60, 120deg): 2CH 670,
865nm | SWI: 4CH 1.05-2.21μm
TIR: 2CH 10.8, 12.0μm | | | Spatial resolution | 250m, 1000m | 250m-1000m | | | Scan type | Push-broom electric scan | Wisk-broom mechanical scan | | | Swath width | 1,150km | 1,400km | | ## **GCOM-C1 Progress** - Critical design of SGLI is progressing by reflecting the results of EM test. - Mechanical test model (MTM) of GCOM-C1 was struck by the earthquake in Tsukuba but didn't suffer from any damage. Mechanical tests are now progressing in the safe test building - Thermal test model (TTM) of GCOM-C1 will be tested in a vacuum chamber after finishing MTM test. - Critical design of GCOM-C1 satellite is progressing toward the critical design review (CDR). # **GCOM-C1 Progress** GCOM-C1 MTM